
2026/01/26 08:32 1/2 라이브러리: 정적 또는 공유?

전자 수첩 - https://www.gamu.kr/dokuwiki/

Beyond Linux® From Scratch (systemd Edition) - Version 12.1
Chapter 2. Important Information

이전 위로 / 처음으로 다음

About Libtool Archive (.la) files Locale Related Issues

라이브러리: 정적 또는 공유?

정적 라이브러리? 공유 라이브러리?

원래의 라이브러리는 단순히 필요한 루틴을 추출하여 실행 프로그램에 연결한 루틴의 아카이브였습니다.
이러한 라이브러리는 정적 라이브러리로 설명되며, UNIX 계열 운영 체제에서는 libfoo.a 형식의 이름
을 가집니다. 일부 구형 운영 체제에서는 이 유형이 유일한 유형입니다.

거의 모든 Linux 플랫폼에는 라이브러리 복사본 하나가 가상 메모리에 로드되고 해당 함수를 호출하는

모든 프로그램이 공유하는 “공유”(또는 이에 상응하는 “동적”) 라이브러리도 있습니다(libfoo.so 형
식의 이름). 이는 공간 효율적입니다.

과거에는 셸과 같은 필수 프로그램이 정적으로 연결되어 있는 경우가 많았기 때문에 libc.so와 같은

공유 라이브러리가 손상되더라도(예: 시스템을 종료하고 fsck 후 lost+found로 이동) 최소한의 복구
시스템이 존재할 수 있었습니다. 요즘에는 대부분의 사람들이 복구해야 하는 경우 대체 시스템 설치나
USB 스틱을 사용합니다. 저널링 파일시스템은 이런 종류의 문제가 발생할 가능성도 줄어듭니다.

이 책에서는 –disable-static과 같은 설정 스위치를 사용하는 곳과 다른 패키지에 포함된 버전 대신 시스
템 버전의 라이브러리를 사용할 수 있는 가능성에 대해 설명하는 곳이 여러 군데 있습니다. 그 주된 이유
는 라이브러리 업데이트를 간소화하기 위해서입니다.

패키지가 동적 라이브러리에 연결된 경우 최신 라이브러리가 설치되고 프로그램이 (재)시작되면 최신
라이브러리 버전으로 업데이트가 자동으로 이루어집니다(라이브러리 주 버전이 변경되지 않은 경우,
예: libfoo.so.2.0에서 libfoo.so.2.1로 이동하는 경우). libfoo.so.3으로 이동하려면 다시 컴

파일해야 합니다(ldd를 사용하여 이전 버전을 사용하는 프로그램을 찾을 수 있습니다). 프로그램이 정
적 라이브러리에 링크된 경우에는 항상 프로그램을 다시 컴파일해야 합니다. 어떤 프로그램이 특정 정적
라이브러리에 링크되어 있는지 알고 있다면 이것은 단지 귀찮은 일입니다. 하지만 보통은 어떤 프로그램
을 다시 컴파일해야 할지 모릅니다.

정적 라이브러리가 언제 사용되는지 식별하는 한 가지 방법은 모든 패키지의 설치가 끝날 때 이를 처리
하는 것입니다. 스크립트를 작성하여 /usr/lib 또는 설치하려는 위치에 있는 모든 정적 라이브러리를

찾아 링커가 더 이상 찾지 못하도록 다른 디렉토리로 옮기거나 이름을 변경하여 libfoo.a가

libfoo.a.hidden이 되도록 하세요. 그런 다음 필요할 경우 정적 라이브러리를 임시로 복원하고 이를
필요로 하는 패키지를 식별할 수 있습니다. 많은 라이브러리가 정적 버전으로만 존재하므로 이 작업을
맹목적으로 수행해서는 안 됩니다. 예를 들어, glibc 및 gcc 패키지의 일부 라이브러리는 시스템에 항상

존재해야 합니다(glibc-2.36 및 gcc-12.2 기준 libc_nonshared.a, libg.a,
libpthread_nonshared.a, libssp_nonshared.a, libsupc++.a).

이 접근 방식을 사용하면 예상보다 많은 패키지가 정적 라이브러리를 사용한다는 것을 발견할 수 있습니
다. 기본 정적 전용 구성의 nettle-2.4가 바로 그런 경우였습니다. 이 라이브러리는 GnuTLS-3.0.19에서

요구되었지만 glib-networking-2.32.3과 같이 GnuTLS를 사용하는 패키지에 연결되었습니다.

많은 패키지는 공통 기능 중 일부를 패키지 내의 프로그램에서만 사용하는 정적 라이브러리에 넣으며,
결정적으로 이 라이브러리는 독립형 라이브러리로 설치되지 않습니다. 이러한 내부 라이브러리는 버그
나 취약점을 수정하기 위해 패키지를 다시 빌드해야 하는 경우 다른 라이브러리와 연결되지 않으므로 문
제가 되지 않습니다.

https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/about_libtool_archive_.la_files
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/index
https://www.gamu.kr/dokuwiki/start
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/locale_related_issues


Last
update:
2024/06/10
15:36

beyondlinuxfromscratch:installedpackages:libraries_static_or_shared https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/libraries_static_or_shared

https://www.gamu.kr/dokuwiki/ Printed on 2026/01/26 08:32

BLFS에서 시스템 라이브러리를 언급할 때는 공유 버전의 라이브러리를 의미합니다. Firefox-115.8.0 및

ghostscript-10.02.1과 같은 일부 패키지는 빌드 트리에 다른 많은 라이브러리를 번들로 제공합니다. 이
러한 패키지가 제공하는 버전은 시스템에서 사용되는 버전보다 오래된 경우가 많기 때문에 버그가 포함
될 수 있으며, 개발자가 포함된 라이브러리의 버그를 수정하는 수고를 하는 경우도 있고 그렇지 않은 경
우도 있습니다.

때로는 시스템 라이브러리를 사용하기로 결정하는 것이 쉬운 결정일 수도 있습니다. 다른 경우에는 시스
템 버전을 변경해야 할 수도 있습니다(예: Firefox-115.8.0에 사용되는 경우 libpng-1.6.42). 간혹 패키지
에 이전 라이브러리가 포함되어 있어 더 이상 현재 버전에 링크할 수 없지만 이전 버전에 링크할 수 있는
경우가 있습니다. 이 경우 BLFS는 일반적으로 제공된 버전을 사용합니다. 포함된 라이브러리가 더 이상
별도로 개발되지 않거나 라이브러리의 업스트림이 패키지의 업스트림과 동일하여 이를 사용할 다른 패
키지가 없는 경우도 있습니다. 이러한 경우 일반적으로 시스템 라이브러리를 선호하더라도 포함된 라이
브러리를 사용하도록 유도됩니다.

From:
https://www.gamu.kr/dokuwiki/ - 전자 수첩

Permanent link:
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/libraries_static_or_shared

Last update: 2024/06/10 15:36

https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/firefox-115.8.0
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/ghostscript-10.02.1
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/firefox-115.8.0
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/libpng-1.6.42
https://www.gamu.kr/dokuwiki/
https://www.gamu.kr/dokuwiki/beyondlinuxfromscratch/installedpackages/libraries_static_or_shared

	[라이브러리: 정적 또는 공유?]
	라이브러리: 정적 또는 공유?
	정적 라이브러리? 공유 라이브러리?



