
2026/01/27 06:54 1/3 4.4. 환경 설정

전자 수첩 - https://www.gamu.kr/dokuwiki/

Linux From Scratch - Version 12.1-systemd
Chapter 4. Final Preparations

이전 위로 / 처음으로 다음

LFS 사용자 추가 SBU 설명

4.4. 환경 설정

두 개의 bash 셸 시작 파일을 새로 작성해서 작업 환경을 설정합니다. 사용자 lfs로 로그인한 상태에서

다음과 같이 새로운 .bash_profile을 만듭니다.

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

lfs 사용자로 로그온하거나 “-” 옵션이 포함된 su 명령을 사용하여 lfs 사용자로 전환한 경우, 해당 셸은

호스트의 /etc/profile(일부 설정 및 환경 변수가 포함되어 있을 수 있음)을 읽은 다음

.bash_profile을 읽는 로그인 셸입니다. .bash_profile 파일에서 exec env -i…/bin/bash 명령은

HOME, TERM 및 PS1 변수를 제외하고 완전히 빈 환경을 가진 새 셸로 실행 중인 셸을 대체합니다. 이렇
게 하면 호스트 시스템에 있지만 사용하길 원치 않거나 잠재적으로 위험한 환경 변수가 빌드 환경에 적
용되지 않습니다.

새로운 셸 인스턴스는 non-login 셸로, /etc/profile 또는 .bash_profile 파일의 내용을 읽고 실행

하지 않고 대신 .bashrc 파일을 읽고 실행합니다. 다음과 같이 .bashrc 파일을 생성합니다.

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/usr/bin
if [ ! -L /bin ]; then PATH=/bin:$PATH; fi
PATH=$LFS/tools/bin:$PATH
CONFIG_SITE=$LFS/usr/share/config.site
export LFS LC_ALL LFS_TGT PATH CONFIG_SITE
EOF

.bashrc 설정 설명

set +h
set +h 명령은 bash의 해시 기능을 끕니다. 해시 기능은 일반적으로는 유용한 기능으로, 해시 테
이블을 사용하여 실행 파일의 전체 경로를 기억함으로써 동일한 실행 파일을 찾기 위해 경로를 반
복해서 검색하지 않아도 됩니다. 하지만 크로스 컴파일 도구는 설치되자마자 사용해야 합니다. 해
시 기능을 끄면 프로그램을 실행할 때마다 셸이 PATH를 검색하도록 지정합니다. 따라서 셸은 호

스트 /usr/bin 또는 /bin에 있는 배포판에서 제공한 동일한 프로그램의 이전 버전을 기억하지

https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/027-adding_the_lfs_user
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/04-final_preparations
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/12.1
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/029-about_sbus


Last
update:
2024/06/14
14:45

linuxfromscratch:12.1:028-setting_up_the_environment https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/028-setting_up_the_environment

https://www.gamu.kr/dokuwiki/ Printed on 2026/01/27 06:54

않고 새로 컴파일된 도구를 사용할 수 있는 $LFS/tools/bin에서 찾습니다.

umask 022
사용자 파일 생성 마스크(umask)를 022로 설정하면 새로 만든 파일과 디렉터리는 소유자만 쓸 수

있지만 누구나 읽고 실행할 수 있습니다(기본 모드가 open(2) 시스템 호출에 사용된다고 가정하
면 새 파일은 권한 모드 644로, 디렉터리는 모드 755로 끝납니다).
LFS=/mnt/lfs
LFS 변수는 선택한 마운트 지점으로 설정해야 합니다.

LC_ALL=POSIX
LC_ALL 변수는 특정 프로그램의 현지화를 제어하여 해당 메시지가 지정된 국가의 규칙을 따르도

록 합니다. LC_ALL을 “POSIX” 또는 “C”(둘은 동일)로 설정하면 크로스 컴파일 환경에서 모든 것
이 예상대로 작동합니다.
LFS_TGT=$(uname -m)-lfs-linux-gnu
LFS_TGT 변수는 기본값은 아니지만, 크로스 컴파일러와 링커를 빌드할 때와 임시 툴체인을 크로
스 컴파일할 때 사용할 호환 가능한 머신 설명을 설정합니다. 자세한 내용은 툴체인 기술 노트에서
확인할 수 있습니다.
PATH=/usr/bin
많은 최신 리눅스 배포판은 /bin과 /usr/bin을 병합했습니다. 이 경우 챕터 6 환경에서는 표준

PATH 변수를 /usr/bin/으로 설정해야 합니다. 그렇지 않은 경우 다음 줄은 경로에 /bin을 추가
합니다.
if [ ! -L /bin ]; then PATH=/bin:$PATH; fi
/bin이 심볼릭 링크가 아니라면 PATH 변수에 추가합니다.

PATH=$LFS/tools/bin:$PATH
기본 PATH 앞에 $LFS/tools/bin을 넣으면 5장 초반에 설치한 크로스 컴파일러가 설치 직후 셸
에서 사용됩니다. 위에서 설정한 해싱을 끄는것과 이 설정으로 크로스 컴파일러 대신 호스트의 컴
파일러가 사용될 위험이 줄어듭니다.
CONFIG_SITE=$LFS/usr/share/config.site
5장과 챕터 6에서 이 변수가 설정되어 있지 않으면 configure 스크립트가 호스트 시스템의

/usr/share/config.site에서 일부 배포판의 특정한 구성 항목을 로드하려고 시도할 수 있습니다.
호스트에 의한 잠재적인 오염을 방지하기 위해 이 변수를 다시 정의합니다.
export …
앞의 명령으로 일부 변수를 설정했지만, 모든 서브 셸에서 볼 수 있도록 해당 변수를 내보냅니다.

중요 몇몇 상용 배포판은 문서화되지 않은 인스턴스 /etc/bash.bashrc를 bash의 초기

화 과정에 추가합니다. 이 파일은 중요한 LFS 패키지 빌드에 영향을 줄 수 있는 lfs 사용자

환경을 수정할 수 있습니다. lfs 사용자의 환경이 깨끗한지 확인하려면

/etc/bash.bashrc가 있는지 확인하고 있는 경우 이 파일을 다른 곳으로 옮기세요.

root 사용자로 다음을 실행합니다.

[ ! -e /etc/bash.bashrc ] || mv -v /etc/bash.bashrc
/etc/bash.bashrc.NOUSE

lfs 사용자가 더 이상 필요하지 않고 파일을 복원하길 경우(7장 시작 부분)

/etc/bash.bashrc를 안전하게 되돌릴 수 있습니다.

8.35장 "Bash-5.2.21"에서 빌드할 LFS Bash 패키지는 /etc/bash.bashrc를 로드하거나

실행하도록 구성되지 않았으므로 완성된 LFS 시스템에서는 이 파일이 쓸모가 없다는 점에
유의하세요.

https://man.archlinux.org/man/open.2
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/032-toolchain_technical_notes
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/05-compiling_a_cross_toolchain
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/05-compiling_a_cross_toolchain
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/07-entering_chroot_and_building_additional_tempory_tools
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/105-bash-5.2.21
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/105-bash-5.2.21


2026/01/27 06:54 3/3 4.4. 환경 설정

전자 수첩 - https://www.gamu.kr/dokuwiki/

여러 프로세서(또는 코어)를 사용하는 많은 최신 시스템의 경우 명령줄 옵션이나 환경 변수를 통해 사용
가능한 프로세서 수를 make 프로그램에 알려주는 “parallel make”를 수행하여 패키지의 컴파일 시간을

줄일 수 있습니다. 예를 들어 인텔 코어 i9-13900K 프로세서는 8개의 P(성능) 코어와 16개의 E(효율성)

코어가 있으며, P 코어는 동시에 2개의 스레드를 실행할 수 있으므로 리눅스 커널에서 각 P 코어는 2개
의 논리적 코어로 모델링됩니다. 결과적으로 총 32개의 논리 코어가 있습니다. 이러한 논리적 코어를 모
두 사용하는 한 가지 확실한 방법은 make가 최대 32개의 빌드 작업을 생성하도록 허용하는 것입니다.

이는 make에 -j32 옵션을 전달하여 수행할 수 있습니다.

make -j32

또는 MAKEFLAGS 환경 변수를 설정하면 해당 내용이 명령줄 옵션으로 make에서 자동으로 사용됩니다.

export MAKEFLAGS=-j32

중요
숫자없는 -j 옵션을 make에 전달하거나 MAKEFLAGS같은 옵션으로 전달하지 마세요.그렇

게 하면 make가 무제한으로 빌드 작업을 생성하여 시스템의 안정성에 문제를 일으킬 수
있습니다.

5장과 챕터 6에서 패키지를 빌드하는 데 사용할 수 있는 모든 논리 코어를 사용하려면 .bashrc에서

MAKEFLAGS를 설정하세요.

cat >> ~/.bashrc << "EOF"
export MAKEFLAGS=-j$(nproc)
EOF

모든 논리적 코어를 사용하지 않으려면 $(nproc)를 사용하려는 논리 코어 갯수로 설정하세요.

마지막으로 임시 도구 빌드를 위한 환경이 완전히 준비되었는지 확인하려면 bash 셸이 새로운 사용자
프로필을 다시 읽도록 합니다.

source ~/.bash_profile

From:
https://www.gamu.kr/dokuwiki/ - 전자 수첩

Permanent link:
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/028-setting_up_the_environment

Last update: 2024/06/14 14:45

https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/05-compiling_a_cross_toolchain
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://www.gamu.kr/dokuwiki/
https://www.gamu.kr/dokuwiki/linuxfromscratch/12.1/028-setting_up_the_environment

	[4.4. 환경 설정]
	4.4. 환경 설정
	.bashrc 설정 설명



