
2026/01/27 09:49 1/5 ii. 툴체인 기술 설명

전자 수첩 - https://gamu.kr/dokuwiki/

Linux From Scratch - Version 12.1-systemd
Important Preliminary Material

이전 위로 / 처음으로 다음

개요 기본적인 컴파일 과정

ii. 툴체인 기술 설명

이 섹션에서는 전반적인 빌드 방법의 근거와 기술적 세부 사항에 대해 설명합니다. 이 섹션의 모든 내용
을 바로 이해하려고 하지 마세요. 이 정보의 대부분은 실제 빌드를 수행한 후에 더 명확해질 것입니다.
빌드 과정 중 언제든 다시 돌아와서 이 장을 다시 읽어보세요.

5장과 6장의 전반적인 목표는 호스트 시스템에서 격리된, 잘 작동하는 것으로 알려진 도구 세트가 포함
된 임시 영역을 생성하는 것입니다. chroot 명령을 사용하면 3장에 남아있는 패키지의 컴파일이 해당

환경 내에서 격리되어 LFS 시스템을 깨끗하고 문제 없이 빌드할 수 있습니다. 이 빌드 과정은 신규 독자
의 위험을 최소화하는 동시에 최고의 교육적 가치를 제공하도록 설계되었습니다.

이 빌드 과정은 크로스 컴파일을 기반으로 합니다. 크로스 컴파일은 일반적으로 빌드에 사용되는 컴퓨터
와 다른 컴퓨터에서 컴파일러와 관련 툴체인을 빌드하는 데 사용됩니다. 새 시스템이 실행될 머신이 빌
드에 사용된 머신과 동일하기 때문에 LFS에서는 반드시 필요한 것은 아닙니다. 그러나 교차 컴파일에는
한 가지 큰 장점이 있습니다. 교차 컴파일된 모든 것이 호스트 환경에서 독립되어 있다는 것입니다.

교차 컴파일 정보

참고
LFS 책은 크로스(또는 네이티브) 툴체인을 빌드하는 일반적인 튜토리얼이 아니며 포함하지
도 않습니다. 자신이 하고 있는 일이 무엇인지 명확하게 이해하지 못한다면 이 책의 명령어
를 LFS 빌드 이외의 다른 목적의 크로스 툴체인에 사용하지 마세요.

크로스 컴파일에는 몇 가지 개념이 포함되어 있습니다. 이 섹션은 처음 읽을 때는 생략할 수 있지만, 나
중에 다시 읽어보면 과정을 더 잘 이해하는 데 도움이 될 것입니다.

먼저 이 장에서 용되는 몇 가지 용어를 정의해 보겠습니다.

Build
프로그램을 빌드하는 머신입니다. 이 머신을 “호스트”라고도 합니다.
Host
빌드된 프로그램이 실행될 컴퓨터/시스템입니다. 이 “호스트” 명칭의 사용은 다른 장의 그것과 동
일하지 않다는 점에 유의하세요.
Target
컴파일러에만 사용됩니다. 컴파일러가 대상 코드를 생성하는 컴퓨터입니다. 빌드와 호스트 모두와
다를 수 있습니다.

예를 들어 다음 시나리오(“Canadian Cross”라고도 함)를 상상해 보겠습니다. 느린 머신에만 컴파일러가

있고, 이를 머신 A라고 하고 컴파일러를 ccA라고 합니다. 또한 빠른 머신(B)도 있지만 (B)용 컴파일러는

없으며, 세 번째 느린 머신(C)에서 실행되는 코드를 생성하려고 합니다. 머신 C용 컴파일러를 세 단계로
빌드하겠습니다.

https://gamu.kr/dokuwiki/linuxfromscratch/12.1/031-introduction
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/3-0-important_preliminary_material
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/12.1
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/033-general_compilation_instructions
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/05-compiling_a_cross_toolchain
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools

Last
update:
2024/06/14
15:55

linuxfromscratch:12.1:032-toolchain_technical_notes https://gamu.kr/dokuwiki/linuxfromscratch/12.1/032-toolchain_technical_notes

https://gamu.kr/dokuwiki/ Printed on 2026/01/27 09:49

Stage Build Host Target Action
1 A A B 머신 A에서 ccA를 이용해서 크로스 컴파일러 cc1 빌드

2 A B C 머신 A에서 cc1을 이용해서 크로스 컴파일러 cc2 빌드

3 B C C 머신 B에서 cc2을 이용해서 컴파일러 ccC 빌드

그런 다음 빠른 머신 B에서 cc2를 사용하여 머신 C에 필요한 모든 프로그램을 컴파일할 수 있습니다. B
가 C용으로 제작된 프로그램을 실행할 수 없으며 머신 C 자체가 실행될 때까지 새로 빌드한 프로그램을

테스트할 방법이 없다는 점에 유의하세요. 예를 들어 ccC의 테스트 스위트를 실행하려면 네 번째 단계를
추가해야 할 수 있습니다.

Stage Build Host Target Action
4 C C C 머신 C에서 ccC을 이용해서 ccC 다시 빌드하고 테스트

위의 예에서 cc1과 cc2만 크로스 컴파일러, 즉 실행되는 컴퓨터와 다른 컴퓨터용 코드를 생성합니다. 다

른 컴파일러인 ccA와 ccC는 실행되는 머신에 대한 코드를 생성합니다. 이러한 컴파일러를 네이티브 컴
파일러라고 합니다.

LFS용 교차 컴파일 구현하기

참고
이 책에서 크로스 컴파일하는 모든 패키지는 autoconf-base 빌드 시스템을 사용합니다.
Autoconf-base 빌드 시스템은 시스템 트리플렛(삼중 항)이라고 하는 cpu-vendor-kernel-os
형식의 시스템 유형을 허용합니다. 공급업체 필드(vendor)는 관련이 없는 경우가 많으므로

autoconf에서는 생략할 수 있습니다.

눈치 빠른 독자라면 왜 “삼중 항”이 네 가지 구성 요소 이름을 가리키는지 궁금할 것입니다.
커널 필드와 OS 필드는 하나의 “시스템” 필드로 시작되었습니다. 이러한 세 개의 필드 형식

은 오늘날에도 일부 시스템(예: x86_64-unknown-freebsd)에서 여전히 유효합니다. 그
러나 두 시스템이 동일한 커널을 공유하면서도 너무도 다른 경우 동일한 삼중항을 사용하
여 설명할 수 없습니다. 예를 들어 휴대폰에서 실행되는 Android는 동일한 유형의

CPU(ARM64)에서 실행되고 동일한 커널(Linux)을 사용하지만 ARM64 서버에서 실행되는

Ubuntu와는 완전히 다릅니다.

에뮬레이션 계층이 없으면 휴대폰에서 서버용 실행 파일을 실행할 수 없으며 그 반대의 경
우도 마찬가지입니다. 따라서 이러한 시스템을 명확하게 지정하기 위해 “시스템” 필드를
커널 및 OS 필드로 구분했습니다. 이 예제에서 Android 시스템은 aarch64-unknown-
linux-android로 지정되고 Ubuntu 시스템은 aarch64-unknown-linux-gnu로 지정
됩니다.

“삼중 항”이라는 단어는 사전에 계속 포함되어 있습니다. 시스템의 트리플렛을 확인하는
간단한 방법은 많은 패키지의 소스와 함께 제공되는 config.guess 스크립트를 실행하는

것입니다. binutils 소스의 압축을 풀고 ./config.guess 스크립트를 실행한 다음 출력을 기

록해 두세요. 예를 들어 32비트 인텔 프로세서의 경우 출력은 i686-pc-linux-gnu입니다. 64

비트 시스템에서는 x86_64-pc-linux-gnu가 됩니다. 대부분의 리눅스 시스템에서는 더 간단

한 gcc -dumpmachine 명령으로 비슷한 정보를 얻을 수 있습니다.

또한 동적 로더라고도 하는 플랫폼의 동적 링커의 이름을 알고 있어야 합니다(binutils의 일

2026/01/27 09:49 3/5 ii. 툴체인 기술 설명

전자 수첩 - https://gamu.kr/dokuwiki/

부인 표준 링커 ld와 혼동하지 마세요). 패키지 glibc에서 제공하는 동적 링커는 프로그램에
필요한 공유 라이브러리를 찾아서 로드하고 프로그램을 실행할 준비를 한 다음 실행합니다.
32비트 Intel 시스템의 동적 링커 이름은 ld-linux.so.2이며, 64비트 시스템에서는 ld-
linux-x86-64.so.2입니다. 동적 링커의 이름을 확인하는 가장 확실한 방법은 다음과 같
이 실행하여 호스트 시스템에서 임의의 바이너리를 검사하고 출력을 메모하는 것입니다:
readelf -l <바이너리 파일명> | grep interpreter. 모든 플랫폼을 포괄하는 참조는 glibc
소스 트리의 루트에 있는 shlib-versions 파일에 있습니다.

LFS에서 크로스 컴파일을 가장하기 위해 호스트 삼중 항의 이름을 약간 조정하여 LFS_TGT 변수의

“vendor” 필드를 “lfs”로 변경합니다. 또한 크로스 링커와 크로스 컴파일러를 빌드할 때 필요한 호스트

파일을 찾을 수 있는 위치를 알려주기 위해 –with-sysroot 옵션을 사용합니다. 이렇게 하면 6장에서 빌드
한 다른 어떤 프로그램도 빌드 머신의 라이브러리에 링크할 수 없게 됩니다. 두 단계만 필수이며 테스트
를 하기 위해서 한 단계가 더 필요합니다.

Stage Build Host Target Action
1 pc pc lfs pc에서 cc-pc를 사용해서 크로스 컴파일러 cc1 빌드

2 pc lfs lfs pc에서 cc-1를 사용해서 컴파일러 cc-lfs 빌드

3 lfs lfs lfs lfs에서 cc-lfs를 사용해서 cc-lfs 다시 빌드하고 테스트

앞의 표에서 “pc“는 이미 설치된 배포판을 사용하는 컴퓨터에서 명령이 실행됨을 의미합니다. “lfs“는

명령이 chroot 환경에서 실행됨을 의미합니다.

이것이 아직 이야기의 끝이 아닙니다. C 언어는 단순한 컴파일러가 아니라 표준 라이브러리도 정의합니

다. 이 책에서는 glibc라는 이름의 GNU C 라이브러리가 사용됩니다(대체 라이브러리인 “musl”도 있습니

다). 이 라이브러리는 LFS 시스템용으로 컴파일해야 합니다. 즉, 크로스 컴파일러 cc1을 사용해야 합니다.
그러나 컴파일러 자체는 어셈블러 명령어 집합에서 사용할 수 없는 함수에 대한 복잡한 서브루틴을 제공
하는 내부 라이브러리를 사용합니다. 이 내부 라이브러리의 이름은 libgcc이며, 이 라이브러리가 제대로

작동하려면 glibc 라이브러리에 연결해야 합니다. 또한 C++용 표준 라이브러리(libstdc++)도 glibc와 링
크되어야 합니다. 이 “닭과 달걀 문제”에 대한 해결책은 먼저 스레드 및 예외 처리와 같은 일부 기능이
제한된 cc1 기반 libgcc를 빌드한 다음, 이 제한된 컴파일러를 사용하여 glibc를 빌드하고(glibc 자체는 저

하되지 않음) libstdc++도 빌드하는 것입니다. 이 마지막 라이브러리는 libgcc의 일부 기능이 부족합니다.

앞 단락의 결론은 cc1은 성능 제한된 libgcc로 완전한 기능을 갖춘 libstdc++를 빌드할 수 없지만, 2단계

에서 C/C++ 라이브러리를 빌드할 수 있는 유일한 컴파일러는 cc1이라는 것입니다. 2단계에서 빌드된

컴파일러인 cc-lfs를 바로 사용하지 않는 이유는 두 가지가 있습니다.

일반적으로 cc-lfs는 PC(호스트 시스템)에서 실행할 수 없습니다. PC용 트리플렛과 lfs용 트리플렛

이 서로 호환되더라도 lfs용 실행 파일은 glibc-2.39에 의존해야 하며 호스트 배포판은 다른 libc 구현

(예: musl) 또는 이전 릴리스(예: glibc-2.13)를 사용할 수 있습니다.

cc-lfs가 PC에서 실행될 수 있더라도 cc-lfs는 네이티브 컴파일러이기 때문에 PC에서 사용하면 PC
라이브러리에 연결될 위험이 있습니다.

따라서 gcc 2단계를 빌드할 때 빌드 시스템에 cc1로 libgcc 및 libstdc++를 재빌드하도록 지시하지만,
libstdc++는 이전의 제한된 빌드 대신 새로 재빌드된 libgcc에 링크합니다. 이렇게 하면 재빌드된

libstdc++가 완전히 작동합니다.

8장(또는 “3단계”)에서는 LFS 시스템에 필요한 모든 패키지를 빌드합니다. 이전 장에서 패키지가 이미

LFS 시스템에 설치되어 있더라도 패키지를 다시 빌드합니다. 이러한 패키지를 다시 빌드하는 주된 이유

는 패키지를 안정적으로 만들기 위해서입니다. 완성된 LFS 시스템에 LFS 패키지를 다시 설치하는 경우
다시 설치된 패키지의 내용은 8장에서 처음 설치했을 때와 동일한 패키지 내용이어야 합니다. 6장 또는
7장에 설치된 임시 패키지는 이 요구 사항을 충족할 수 없는데, 그 이유는 일부 패키지가 선택적 종속성

https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/08-installing_basic_system_software
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/08-installing_basic_system_software
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/07-entering_chroot_and_building_additional_tempory_tools

Last
update:
2024/06/14
15:55

linuxfromscratch:12.1:032-toolchain_technical_notes https://gamu.kr/dokuwiki/linuxfromscratch/12.1/032-toolchain_technical_notes

https://gamu.kr/dokuwiki/ Printed on 2026/01/27 09:49

없이 빌드되고 자동 컴파일로 인해 6장에서 일부 기능 검사를 수행할 수 없기 때문에 임시 패키지에 선
택적 기능이 부족하거나 최적이 아닌 코드 루틴이 사용되기 때문입니다. 또한 패키지를 다시 빌드하는
이유중에 하나는 테스트 스위트를 실행하기 위해서입니다.

세부 진행 사항

크로스 컴파일러는 최종 시스템의 일부가 아니므로 별도의 $LFS/tools 디렉터리에 설치됩니다.

Binutils가 먼저 설치되는 이유는 gcc와 glibc의 configure 실행이 어셈블러와 링커에서 다양한 기능 테
스트를 수행하여 어떤 소프트웨어 기능을 활성화 또는 비활성화할지 결정하기 때문입니다. 이 첫 과정은
생각보다 매우 중요합니다. gcc 또는 glibc를 잘못 구성하면 툴체인이 미묘하게 손상될 수 있으며, 이러
한 손상으로 인한 영향은 전체 배포의 빌드가 거의 끝날 때까지 나타나지 않을 수 있습니다. 테스트 스위
트 실패는 일반적으로 너무 많은 추가 작업을 수행하기 전에 이 오류를 강조 표시합니다.

Binutils는 어셈블러와 링커를 $LFS/tools/bin과 $LFS/tools/$LFS_TGT/bin의 두 위치에 설치합
니다. 한 위치의 도구는 다른 위치에 하드 링크됩니다. 링커의 중요한 기능은 라이브러리 검색 순서입니
다. ld에 –verbose 플래그를 전달하면 자세한 정보를 얻을 수 있습니다. 예를 들어, $LFS_TGT-ld
–verbose | grep SEARCH는 현재 검색 경로와 그 순서를 보여줍니다. (이 예제는 lfs 사용자로 로그인

한 상태에서만 표시된 대로 실행할 수 있습니다. 나중에 이 페이지로 돌아오면 $LFS_TGT-ld를 ld로 바
꾸세요).

다음으로 설치되는 패키지는 gcc입니다. configure를 실행하는 동안 볼 수 있는 예는 다음과 같습니다.

checking what assembler to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/ld

이것은 위에서 언급한 이유 때문에 중요합니다. 또한 gcc의 configure 스크립트가 사용할 도구를 찾기 위

해 PATH 디렉터리를 검색하지 않는다는 것을 보여줍니다. 그러나 실제 gcc 자체의 작동 중에는 반드시

동일한 검색 경로가 사용되는 것은 아닙니다. gcc가 사용할 표준 링커를 찾으려면 $LFS_TGT-gcc -
print-prog-name=ld를 실행합니다. (나중에 다시 사용할 경우 $LFS_TGT- 접두사는 제거하세요.)

프로그램을 컴파일하는 동안 -v 명령줄 옵션을 전달하면 gcc에서 자세한 정보를 얻을 수 있습니다. 예를

들어 $LFS_TGT-gcc -v example.c(또는 나중에 다시 돌아오는 경우 $LFS_TGT- 없이)는 포함된 헤더

에 대한 gcc의 검색 경로와 순서를 포함하여 전처리기, 컴파일 및 어셈블리 단계에 대한 자세한 정보를
표시합니다.

다음은 처리된 Linux API 헤더입니다. 이를 통해 표준 C 라이브러리(glibc)가 Linux 커널이 제공하는 기능
과 연동될 수 있습니다.

다음은 glibc입니다. glibc를 빌드할 때 가장 중요한 고려 사항은 컴파일러, 바이너리 도구 및 커널 헤더

입니다. 컴파일러는 일반적으로 configure 스크립트에 전달된 –host 매개변수와 관련된 컴파일러(예: 우

리의 경우 컴파일러는 $LFS_TGT-gcc)를 사용하므로 문제가 되지 않습니다. 바이너리 도구와 커널 헤
더는 조금 더 복잡할 수 있습니다. 따라서 위험을 감수하지 않고 사용 가능한 구성 스위치를 사용하여 올
바른 선택을 적용합니다. configure를 실행한 후 빌드 디렉터리에 있는 config.make 파일의 내용을

확인하여 모든 중요한 세부 정보를 확인하세요. 사용할 바이너리 도구를 제어하기 위해 CC=“$LFS_TGT-
gcc”($LFS_TGT가 확장된 상태)를 사용하고 컴파일러의 포함 검색 경로를 제어하기 위해 -nostdinc 및 -
isystem 플래그를 사용하는 것을 주목하세요. 이러한 항목은 빌드 기계에 대해 독립적이며, 일반적으로

툴체인 기본값에 의존하지 않는 glibc 패키지를 빌드하도록 합니다.

https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools

2026/01/27 09:49 5/5 ii. 툴체인 기술 설명

전자 수첩 - https://gamu.kr/dokuwiki/

위에서 언급했듯이 표준 C++ 라이브러리가 다음에 컴파일되고, 6장에서는 빌드 시 순환 종속성을 끊기
위해 교차 컴파일해야 하는 다른 프로그램이 이어서 컴파일됩니다. 이러한 모든 패키지의 설치 단계에서
는 DESTDIR 변수를 사용하여 LFS 파일시스템에 설치합니다.

6장 마지막에 네이티브 LFS 컴파일러가 설치됩니다. 먼저 다른 프로그램과 동일한 DESTDIR 디렉터리에

binutils-pass2가 빌드된 다음, 중요하지 않은 일부 라이브러리를 생략된 gcc-pass2가 빌드됩니다. gcc의
설정 스크립트에 있는 이상한 로직으로 인해 호스트가 대상과 동일하지만 빌드 시스템과 다른 경우
CC_FOR_TARGET이 cc로 끝납니다. 그렇기 때문에 구성 옵션 중 하나로 CC_FOR_TARGET=$LFS_TGT-
gcc가 명시적으로 선언됩니다.

7장에서 chroot 환경으로 들어가면 툴체인의 올바른 작동에 필요한 프로그램의 임시 설치가 수행됩니다.
이 시점부터 핵심 툴체인은 독립적이고 자체적으로 호스팅됩니다. 8장에서는 완전한 기능을 갖춘 시스
템에 필요한 모든 패키지의 최종 버전을 빌드하고 테스트 및 설치합니다.

From:
https://gamu.kr/dokuwiki/ - 전자 수첩

Permanent link:
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/032-toolchain_technical_notes

Last update: 2024/06/14 15:55

https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/06-cross_compiling_temporary_tools
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/07-entering_chroot_and_building_additional_tempory_tools
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/08-installing_basic_system_software
https://gamu.kr/dokuwiki/
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/032-toolchain_technical_notes

	[ii. 툴체인 기술 설명]
	ii. 툴체인 기술 설명
	교차 컴파일 정보
	LFS용 교차 컴파일 구현하기
	세부 진행 사항

