
2026/02/15 17:12 1/3 5.3. GCC-13.2.0 - 1차

전자 수첩 - https://gamu.kr/dokuwiki/

5.3. GCC-13.2.0 - 1차

GCC 패키지에는 C 컴파일러와 C++ 컴파일러가 포함된 GNU 컴파일러 컬렉션이 포함되어 있습니다.

대략적인 빌드 시간입니다: 3.8 SBU 필요한 디스크 공간: 4.1 GB

5.3.1. Cross GCC 설치

GCC를 사용하려면 GMP, MPFR 및 MPC 패키지가 필요합니다. 이러한 패키지는 호스트 배포에 포함되지

않을 수 있으므로 GCC로 빌드됩니다. 각 패키지의 압축을 GCC 소스 디렉터리에 풀고 디렉터리의 이름을

변경하여 GCC 빌드 중에 자동으로 사용할 수 있도록 하세요:

참고 이 장에 대해 자주 오해하는 경우가 있습니다. 절차는 앞서 설명한 대로 다른 모든 챕
터와 동일합니다(패키지 빌드 지침). 먼저 소스 디렉토리에서 gcc-13.2.0 tarball을 추출한
다음 생성한 디렉토리로 변경합니다. 그런 다음 아래 지침을 진행해야 합니다.

tar -xf ../mpfr-4.2.1.tar.xz mv -v mpfr-4.2.1 mpfr tar -xf ../gmp-6.3.0.tar.xz mv -v gmp-6.3.0 gmp tar -
xf ../mpc-1.3.1.tar.gz mv -v mpc-1.3.1 mpc x86_64 호스트에서는 64비트 라이브러리의 기본 디렉터리

이름을 “lib”로 설정합니다:

케이스 $(uname -m) in

x86_64)
 sed -e '/m64=/s/lib64/lib/' \.
 -i.orig gcc/config/i386/t-linux64

;; esac GCC 문서에서는 전용 빌드 디렉터리에 GCC를 빌드할 것을 권장합니다:

mkdir -v 빌드 cd 빌드 컴파일을 위해 GCC를 준비합니다:

../configure \

-target=$LFS_TGT \1.
-prefix=$LFS/tools \2.
-with-glibc-version=2.39 \.3.
-with-sysroot=$LFS \.4.
-with-newlib \5.
-without-headers \6.
-enable-default-pie \7.
-enable-default-ssp \8.
-disable-nls \9.
-disable-shared \10.
-disable-multilib \11.
-disable-threads \12.
-disable-libatomic \13.

Last
update:
2024/05/03
04:43

linuxfromscratch:12.1:036-gcc-13.2.0_-_pass_1 https://gamu.kr/dokuwiki/linuxfromscratch/12.1/036-gcc-13.2.0_-_pass_1?rev=1714711425

https://gamu.kr/dokuwiki/ Printed on 2026/02/15 17:12

-disable-libgomp \14.
-disable-libquadmath \.15.
-disable-libssp \16.
-disable-libvtv \17.
-disable-libstdcxx \.18.
-enable-languages=c,c++19.

구성 옵션의 의미

–with-glibc-version=2.39 이 옵션은 대상에서 사용할 Glibc 버전을 지정합니다. pass1 GCC로 컴파일된

모든 것이 호스트 배포판의 libc와 분리된 루트 환경에서 실행되므로 호스트 배포판의 libc와는 관련이 없
습니다.

–with-newlib 아직 작동하는 C 라이브러리를 사용할 수 없으므로 libgcc를 빌드할 때 inhibit_libc 상수가

정의되도록 합니다. 이렇게 하면 libc 지원이 필요한 모든 코드의 컴파일이 방지됩니다.

–헤더 없이 완전한 크로스 컴파일러를 만들 때 GCC는 대상 시스템과 호환되는 표준 헤더가 필요합니다.

우리의 목적상 이러한 헤더는 필요하지 않습니다. 이 스위치는 GCC가 이러한 헤더를 찾지 않도록 합니
다.

–enable-default-pie 및 –enable-default-ssp 이 스위치를 사용하면 GCC가 기본적으로 일부 보안 기능이

강화된 프로그램을 컴파일할 수 있습니다(자세한 내용은 8장의 PIE 및 SSP에 대한 메모에서 확인할 수
있습니다). 컴파일러는 임시 실행 파일만 생성하므로 이 단계에서는 꼭 필요한 것은 아닙니다. 하지만
임시 패키지를 가능한 한 최종 패키지에 가깝게 만드는 것이 더 깔끔합니다.

–disable-shared 이 스위치는 GCC가 내부 라이브러리를 정적으로 연결하도록 합니다. 공유 라이브러리

에는 대상 시스템에 아직 설치되지 않은 Glibc가 필요하기 때문에 이 기능이 필요합니다.

–disable-multilib x86_64에서 LFS는 멀티라이브 구성을 지원하지 않습니다. 이 스위치는 x86에는 무해합
니다.

–disable-threads, –disable-libatomic, –disable-libgomp, –disable-libquadmath, –disable-libssp, –disable-
libvtv, –disable-libstdcxx 이 스위치는 각각 스레딩, libatomic, libgomp, libquadmath, libssp, libvtv 및
C++ 표준 라이브러리에 대한 지원을 비활성화합니다. 이러한 기능은 크로스 컴파일러를 빌드할 때 컴파

일에 실패할 수 있으며 임시 libc를 크로스 컴파일하는 작업에는 필요하지 않습니다.

–enable-languages=c,c++ 이 옵션은 C와 C++ 컴파일러만 빌드하도록 합니다. 현재 필요한 언어는 이
두 가지뿐입니다.

실행하여 GCC를 컴파일합니다:

make 패키지를 설치합니다:

make install 이 GCC 빌드는 몇 가지 내부 시스템 헤더를 설치했습니다. 일반적으로 그 중 하나인

limits.h에는 해당 시스템 limits.h 헤더(이 경우 $LFS/usr/include/limits.h)가 포함됩니다. 그러나 이 GCC
빌드 시점에는 $LFS/usr/include/limits.h가 존재하지 않으므로 방금 설치한 내부 헤더는 부분적인 독립

파일이며 시스템 헤더의 확장 기능을 포함하지 않습니다. 이 정도면 Glibc를 빌드하는 데 충분하지만 나

중에 전체 내부 헤더가 필요합니다. 일반적인 상황에서 GCC 빌드 시스템이 수행하는 것과 동일한 명령
을 사용하여 내부 헤더의 전체 버전을 생성하세요:

[참고] 참고 아래 명령은 역따옴표와 $() 구문이라는 두 가지 방법을 사용한 중첩 명령 대체의 예를 보
여줍니다. 두 대체 방법에 대해 동일한 방법을 사용하여 다시 작성할 수도 있지만, 두 가지 방법을 혼합
하여 사용할 수 있음을 보여주기 위해 이러한 방식으로 표시했습니다. 일반적으로 $() 방법을 선호합니

2026/02/15 17:12 3/3 5.3. GCC-13.2.0 - 1차

전자 수첩 - https://gamu.kr/dokuwiki/

다.

cd .. cat gcc/limitx.h gcc/glimits.h gcc/limity.h > \

`dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/include/limits.h

이 패키지의 상세한 내용은 8.28.2 “GCC의 구성”에 있습니다.

From:
https://gamu.kr/dokuwiki/ - 전자 수첩

Permanent link:
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/036-gcc-13.2.0_-_pass_1?rev=1714711425

Last update: 2024/05/03 04:43

https://gamu.kr/dokuwiki/
https://gamu.kr/dokuwiki/linuxfromscratch/12.1/036-gcc-13.2.0_-_pass_1?rev=1714711425

	[5.3. GCC-13.2.0 - 1차]
	5.3. GCC-13.2.0 - 1차
	5.3.1. Cross GCC 설치

